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M-adaptation for the Acoustic Wave Equation

Vitaliy Gyrya, Konstantin Lipnikov, T-5 We have developed a novel adaptive strategy, dubbed m-adaptation, for solving the acoustic wave 
equation (in the time domain) on square meshes. The m-adaptation is based on selecting the optimal 
member of a three-parameter Mimetic Finite Difference (MFD) family of second-order schemes. 
This family contains as particular members the classical methods such as the finite element, finite 
difference, and a few other more recent methods. The optimal member of the MFD family eliminates the 
numerical dispersion at the fourth order and the numerical anisotropy at the sixth order. The numerical 
experiments show that the new approach is consistently better than the classical methods for reducing 
a long-time integration error.

Numerical modeling of wave propagation is essential for a 
large number of applied problems in acoustics, elasticity, and 

electromagnetics. The acoustic equation is one of the simplest examples 
of equation modeling wave propagation. For long integration times, 
the dominant contributions to an error in the solution come from such 
numerical artifacts as numerical dispersion and numerical anisotropy. 
The numerical dispersion is the phenomenon in which the propagation 
velocity of the wave in the numerical scheme depends on its wavelength, 
while in the continuum problem there is no such dependence. Typically, 
the effect of the numerical dispersion is greater on under-resolved waves 
with ten or fewer points per wavelength, making them travel slower 
than in the physical problem. As a consequence, the wave does not just 
arrive at a wrong time (which could be compensated by time rescaling) 
but it also has a highly distorted profile. The numerical anisotropy is 
the dependence of the numerical velocity of the wave on its orientation 
with respect to the mesh. For a 2D acoustic wave equation we developed 
an adaptation technique, dubbed m-adaptation, that selects an optimal 
member of a rich parameterized family of second-order methods with 
smallest (fourth-order) dispersion and (sixth-order) anisotropy.

The semi-discrete form of the acoustic wave equation in the time domain 
formulation is:

  			   Mutt = Au			   (1) 

where the mass and stiffness matrices M and A are assembled from 
elemental matrices ME and AE.

Since the mass matrix M has to be inverted on every time step, the  
explicit time discretization of equation (1) is computationally efficient 

only when the inverse M−1 is easy to compute. One of the common 
approaches is to replace the mass matrix M with a diagonal matrix D by 
lumping non-diagonal entries to the diagonal. This does not change the 
order of the numerical scheme but may lead to an undesirable increase 
of numerical dispersion. Another approach [1] is to replace the inverse 
M-1 with the product D-1MD-1, where the inverse is taken only for the 
diagonal matrix D. Similar to lumping, this approach does not change 
the order of the numerical scheme but may also result in the increase of 
the numerical dispersion. To compensate for the possible increase of the 
dispersion one can modify the stiffness and the mass matrices A and M 
using modified quadrature rules as is done in [1].

In the m-adaptation approach, we consider a parameterized Mimetic 
Finite Difference (MFD) family of numerical schemes from which we 
select a member with the smallest numerical dispersion and anisotropy 
[2]. The parameters in the MFD family appear through the elemental 
mass and stiffness matrices ME

MFD and AE
MFD, respectively. The elemental 

mass matrix ME
MFD on a square element E depends on two parameters  

m1, m2 while the elemental stiffness matrix AE depends on one  
parameter ζ.

The MFD family parameterized by (m1, m2, ζ) contains a large number of 
known methods as special cases–for example, standard Finite Difference 
(FD), rotated FD, weighted combination of standard and rotated 
FD, Finite Element (FE) with lumped mass matrix, and the modified 
quadrature method of Guddati and Yue [1]. Moreover, compared with the 
last method, the MFD family is richer–it contains one extra parameter.

For the acoustic wave equation in 2D the optimal parameters  
(m1, m2, ζ) can be selected based on the von-Neumann analysis. One 

Fig. 1. A more narrow band of values 
in the dispersion curves for the 
m-adaptation method (bottom) 
compared to the modified quadrature 
method [2] (top) for various angles θ 
between the planar wave and the mesh 
axis for the Courant number c∆t

h
= 0.75  

indicates smaller anisotropy.
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obtains a local dispersion equation relating the numerical velocity of 
the wave ch with its wave number κ, mesh size h, and the parameters 
(m1, m2, ζ). Expending the error between the physical and numerical 
velocities of the wave, c − ch, in powers of wave resolution number, κh, 
we select the parameters (m1, m2, ζ) to eliminate the error at the leading 
powers of κh. As a result of m-adaptation, the numerical velocity ch is 
accurate to the fourth order in dispersion (as in [2]) and to the sixth 
order in anisotropy (versus fourth order in[2] see Fig. 1 and 2).

Fig. 2. Displacement as a function of 
the distance from the origin at time 
T = 0.9 obtained using the modified 
quadrature method (top) and the 
m-adaptation method (bottom) for a 
Gaussian initial displacement data.

In the future we plan to develop the m-adaptation technique for higher 
order schemes on general meshes and for elastic wave equations. 
The potential of m-adaptation is high because with increased order 
of the scheme and/or number of vertices in the element, the number 
of free parameters grows quadratically. This may lead to a dramatic 
improvement in the dispersion and anisotropy of the optimal scheme.


